Improved Accuracy of High-Order WENO Finite Volume Methods on Cartesian Grids
نویسندگان
چکیده
We will present our recent result on the construction of high order WENO finite volume methods for the approximation of hyperbolic partial differential equations on Cartesian grids. The simplest way to use WENO methods on multidimensional Cartesian grids consists in applying a one-dimensional WENO scheme in each direction. This spatial discretization is typically combined with a Runge-Kutta method in time. In the finite difference context, such WENO methods lead to a high order accurate approximation. In contrast to this, finite volume WENO methods based on a dimension-by-dimension approach are only second order accurate for nonlinear problems, see [2].
منابع مشابه
International Journal of Mathematics and Computer Sciences (IJMCS) ISSN: 2305-7661 Vol.21 September 2013 International Scientific Researchers (ISR)
We propose a simple modification of standard weighted essentially non-oscillatory (WENO) finite volume methods for Cartesian grids, which retains the full spatial order of accuracy of the one-dimensional discretization when applied to nonlinear multidimensional systems of conservation laws. We derive formulas, which allow us to compute high-order accurate point values of the conserved quantitie...
متن کاملHigh order WENO and DG methods for time-dependent convection-dominated PDEs: A brief survey of several recent developments
For solving time-dependent convection-dominated partial differential equations (PDEs), which arise frequently in computational physics, high order numerical methods, including finite difference, finite volume, finite element and spectral methods, have been undergoing rapid developments over the past decades. In this article we give a brief survey of two selected classes of high order methods, n...
متن کاملHigh-order finite-volume adaptive methods on locally rectangular grids
We are developing a new class of finite-volume methods on locally-refined and mapped grids, which are at least fourth-order accurate in regions where the solution is smooth. This paper discusses the implementation of such methods for time-dependent problems on both Cartesian and mapped grids with adaptive mesh refinement. We show 2D results with the Berger–Colella shock-ramp problem in Cartesia...
متن کاملHigh order residual distribution conservative finite difference WENO schemes for steady state problems on non-smooth meshes
In this paper, we propose a high order residual distribution conservative finite difference scheme for solving steady state hyperbolic conservation laws on non-smooth Cartesian or other structured curvilinear meshes. WENO (weighted essentially non-oscillatory) integration is used to compute the numerical fluxes based on the point values of the solution, and the principles of residual distributi...
متن کاملOn the Construction, Comparison, and LocalCharacteristic Decomposition for High-OrderCentral WENO Schemes
In this paper, we review and construct fifthand ninth-order central weighted essentially nonoscillatory (WENO) schemes based on a finite volume formulation, staggered mesh, and continuous extension of Runge–Kutta methods for solving nonlinear hyperbolic conservation law systems. Negative linear weights appear in such a formulation and they are treated using the technique recently introduced by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Sci. Comput.
دوره 61 شماره
صفحات -
تاریخ انتشار 2014